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The principal-components statistical procedure for data reduction is used to efficiently encode speech power 
spectra by exploiting the correlations of power spectral amplitudes at various frequencies. Although this data- 
reduction procedure has been used in several previous studies, little attempt was made to optimize the 
methods for spectral selection and coding through the use of intelligibility testing. In the present study, 
principal-components basis vectors were computed from the•continuous speech of several male and female 
speakers using various nonlinear spectral amplitude scales. Speech was synthesized using a combination linear 
predictive (LP) principal-components vocoder. Of the amplitude scales investigated for use with a principal- 
components analysis of speech spectra, logarithmic amplitude coding of non-normalized spectra emerged as a 
slight favorite. Speech synthesized from four principal components was found to be about 80% intelligible 
using a form of the Diagnostic Rhyme Test for rhyming word pairs and about 95% intelligible for words 
within a sentence context. Speech synthesized from spectral principal components compared favorably in 
intelligibility and quality with speech synthesized from a control LP vocoder with the same number Of 
parameters. 

PACS numbers: 43.70.Ep, 43.70.Gr, 43.70.Lw, 43.70.Jt 

INTRODUCTION 

The principal-components statistical data-reduction 
procedure has often been used for efficient encoding of 
speech spectra. The procedure exploits the experimen- 
tally observed correlations among spectral band ener- 
gies at different frequencies in order to derive a much 
smaller set of statistically independent parameters 
(principal components) which retain most of the infor- 
mation present in the original speech spectra. The 
principal components can be regarded as spectral shape 
factors which, for a given number of principal compo- 
nents, best explain the overall shape of the spectra. 
This type of description contrasts with a formant de- 
scription in which more emphasis is placed on the ma- 
jor spectral peaks and less on the overall spectral 
shape. 

The principal-components statistical procedure has 
been used previously by several researchers to remove 
redundancy from speech spectral data. The present 
study is an extension of this earlier work; however, 
unlike any previous work in this area, we have also 
quantitatively evaluated some of the important variables 
in the procedure through the use of comprehensive 
speech intelligibility and quality testing. Also unique 
to the present study is the use of a linear predictive 
roeoder, rather than a channel vocoder, as the funda- 
mental speech analysis-synthesis tool. The linear pre- 
diction voteder was selected because of its well-defined 

mathematical model, and also because of its ease of 
implementation and computational efficiency. 

Kramer and Mathews (1956) were apparently the first 
researchers to utilize the correlations among the vari- 
ous channels of a channel voteder to obtain a more ef- 

ficient coding of speech spectra. As a starting point, 

they used linear amplitude codings of the speech spec- 
tral band energies, rather than a more perceptually 
relevant amplitude coding, such as a logarithmic or 
power-function coding. The Kramer and Mathews 
(1956) study was also based on the correlation matrix 
(which incorporates the data-set mean values) rather 
than the eovariance matrix (which does not include the 
data-set mean values). Later in this paper, we show 
that data reduction based on the correlation matrix is 

inherently somewhat inferior to data reduction based 
on the eovariance matrix. Nevertheless, they reported 
synthesizing fairly intelligible speech using six to ten 
independent parameters derived from the correlation 
matrix. They apparently viewed their procedure as_a 
method for efficient transmission of correlated signals, 
rather than an attempt to analyze the underlying struc- 
ture of the data set. 

The next study which investigated the correlations of 
channel vocoder signals in order to achieve an efficient 
coding of speech spectra was reported by Kulya (1964). 
This study was similar to that of Kramer and Mathews 
(1956) in that both a linear amplitude coding of the re- 
coder signMs was used, and the statistical properties 
of the spectral data were summarized in the correla- 

tion matrix. Kulya (1964) reported that the vocoder 
signals could be represented by eight optimum ortho- 
gonal parameters (principal components) to within 7.5% 
of the original vocoder signals (in terms of normalized 
mean-square error). Kulya (1964) also investigated a 
"harmonic" voteder in which the amplitude spectrum 
is expanded in a Fourier series expansion and observed 
that the optimum orthogonal parameter set is only 
slightly more efficient for representing speech spectra 
than the harmonic vocoder parameter set (not sur- 
prising, since the principal-components basis vectors 
tend to look like sine and cosine functions). 
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Crowther and Rader (1966) were first to report using 
transformations of log-coded amplitudes of vocoder band 
energies to achieve an efficient coding of the band en- 
ergies. Because of the simplicity of implementation, 
they used Hadamard transform linear combinations, 
similar to principal components, but not optimum in 

the mean-square .error sense. They found that speech 
synthesized from Hadamard-transformed vocoder sig- 
nals encoded with 1850 bits/s was as clear as speech 
synthesized from the original vocoder signals at a bit 
rate of 4000 bits/s. 

Boehm and Wright (1968) and Liet al. (1969) used 
statistical methods to both reduce the redundancy of 
speech spectra and simultaneously obtain an efficient 
analysis tool for the examination of speech spectra. 
Boehm and Wright calculated eigenvectors of the 
correlation matrix of the mel-sone (perceptual units of 
frequency and amplitude, respectively) encoded speech 
spectra. Liet al. used eigenvectors of the var- 
iance-covariance matrix corresponding to high-fre- 
quency preemphasized log-coded spectra. Although 
Boehm and Wright were able to reestimate their 
original spectral data from a small number of dimen- 
sions with an apparently much lower average mean- 
square error than were Liet •l., it is difficult 
to directly compare these two studies because of the 
procedural differences and the lack of evaluation cri- 
teria more independent of the method than is the mean- 
square error (as, for example, the quality of synthe- 
sized speech). 

Much of the recent work in the area of low-dime•- 
sionaiity representations of speech spectra has been 
done by researchers at the Institute for Perception TNO 
[Plomp el al. (1967); Pols et al. (1969, 1973); Klein et 
al. (1970); Pols (1971,1975,1977); and Nierop el •I. 
(1973)]. In all cases, the statistical properties of 
speech were summarized using a variance-covariance 
matrix corresponding to level-normalized, log-coded 
speech spectra, although there is no firm experimental 
justification for this particular coding choice. The empha- 
sis of their work has been with vowel spectra (Plomp et 
al., 1967; Pois et al., 1969; Klein et al., 1970; Pols, 
1971; Nierop et al., 1973). They noted that a plot of 
vowels in the space spanned by the first two dimensions 
is very similar to a plot of the vowels in the F1,F2 
plane (Plomp et al., 1967). This group has also done 
some speech synthesis using various numbers of spec- 
tral dimensions and a channel vocoder type synthesizer 
(Pols, 1975). They have reported intelligibility scores 
of about 50% to 60% for CVC words using four or five 
dimensions with their particular method. 

Sambur (1975) applied the principal-components 
method to the log-area ratios of a linear predictive vo- 
coder as a method for efficiently coding these param- 
eters. Log-area ratios can be related in a straight- 
forward manner to the cross-sectional areas of a non- 

uniform acoustic tube approximation of the vocal tract 
(Atal and Hauauer, 1971), and therefore might be ex- 
pected to form a natural characterization of voice in- 
formation. Sambur (1975) reported synthesizing good 
quality speech with six orthogonal parameters when the 

statistics were analyzed separately for each sentence 
and each speaker. Whether or not this method would 
have worked well when data from a larger piece of text 
and a large number of speakers was grouped together 
is unclear since the perceptual significance of log-area 
ratios is not nearly as well understood as is the per- 
ceptual significance of spectral band energies. 

All of these studies support the general idea that a 
principal-components analysis is a useful method both 
for efficient coding of spectral data and for use in mod- 
eliug the underlying structure of the spectral data. 
However, it is difficult to use data from these studies 
to compare the various versions of principal-components 
analysis (type of spectral coding, method of spectral 
selection, etc.) since the data available are always in 
the form of an error criterion with respect to the par- 
ticular measurement scale used. Very little effort has 
been directed to optimizing the procedure through a 
measure that is independent of the method, such as 
perceptual testing of synthesized speech. 

The most important underlying assumption in a prin- 
cipal-component s analysis of speech is that average 
mean-square error is a good perceptual distance mea- 
sure for speech spectra. This assumption, from anoth- 
er viewpoint, is that data variance is equivalent to data 
"information." However, the validity of the assumption 
depends strongly on the proper scaling of the data. In 
our work, we have attempted to optimize a low-redun- 
dancy principal-components spectral characterization 
by measuring speech spectra with a variety of scales 
selected to maximize the likelihood that low mean- 

square error would correlate well with high intelligi- 
bity. 

I. THE STATISTICAL PROCEDURE 

A. Principal-components method of data reduction 

The principal-components method is a general sta- 
tistical procedure for finding an efficient representa- 
tion of a set of correlated data. From a geometric 
viewpoint, this procedure can be seen as translating 
and rotating the coordinate system used to measure the 
data. Alternately, the procedure can be considered as 
deriving an optimal set of orthonormal basis vectors 
(Karhunen-LoL•ve) for representing the data. The gen- 
eral principal-components method is discussed in most 
advanced statistics textbooks (for example, Harman, 
1976); the principal-components procedure applied to 
speech spectral data is discussed in the paper by Li et 
al. (1969). 

The essential details of the analysis method can be 
summarized rather briefly as follows. The statistical 
properties of the original data set (20 band energies 
sampled once every 12.8 ms for the present study) are 
contained in the covariance matrix [C] with each ele- 
ment given by 

] Cij= • (Xhl--.•i)(X/• $--•y) , for {,j=l,2 .... ,n, 

where K is the total number of data frames, xni is the 
ith data sample of the kth frame, ]i is the average over 
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k (time) of the ith data sample, and n is the number of 
data elements in each frame. 

The principal-components basis vectors are the m 
eigenvectors (m •< n} of the covariance matrix corre- 
sponding to the m largest eigenvalues of the matrix. 
Each principal component can be obtained by a weighted 
average of the components of the original data vector, 
with weighting coefficients given by the corresponding 
eigenvector. Furthermore, the original data can be re- 
estimated from linear combinations of the principal 
components, plus average value terms which depend on 
the original data-set average values. The average val- 
ue terms are given by 

Mj.= Aij•'•A•m, j=l,2,...,n, 

where A,=jth component of the ith eigenvector of [C] 
with the eigenvectors ranked in order according to de- 
creasing eigenvalues. This data-reduction and recon- 
stitution procedure is illustrated in Fig. 1. The proce- 
dure as just outlined insures that, for a given number 
of principal components, the average mean-square er- 
ror between the original and reconstituted data is min- 
imized. 

Krarher and Mathews (1956), as well as Knlya (1964) 
and Boehm and Wright (1968), formulated the data-re- 
duction procedure in a somewhat different manner than 
just described, in that the constant value terms indi- 
cated in the r•ght-hand box of Fig. 1 were not allowed. 
In their formulation, the optimal transformation coef- 
ficients are obtained from eigenvectors of the correla- 
tion matrix, which corresponds to the covariance ma- 
trix used in our study, except the data-set average val- 
ues are not subtracted in •orming the matrix. Due to 
the somewhat more restrictive problem definition (al- 
lowing only a rotation of the coordinate system rather 
than both a translation of the origin and rotation of the 
coordinate system), the correlation matrix method will 
usually give a somewhat larger mean-square error, 
for a given number of dimensions, than will data re- 
duction based on the covariance matrix. Thus the prin- 
cipal-components data-reduction method is presumably 
a more efficient data-reduction procedure than is the 
correlation data-reduction procedure described by 
Kramer and Mathews (195õ). 

B. Orthogonal rotation to congruence 

The principal-components basis vector set is not 
unique in that there are an infinite number of orthogonal 
rotations of the principal-components basis vectors 
which will span the same space. The principal-compo- 
nents hasis vectors are nnique in that as much as pos- 
sible of the original data set is accounted for by the 
first hasis vector, as much as possible of the remain- 
ing variance is accounted for by the second basis vec- 
tor, and so on. However, after it has been decided tl•t 
a certain number of basis vectors are required, the 
.same total variance can be accounted for with a rotated 

version of the original vectors. The difference is that 
variance associat,ed with the individual rotated hasis 
vectors will not be the same as variance associated 

with individual vectors of the original set. 

Thus it is possible that two basis vector sets obtained 
from separate data sets, as for example different 
speakers, may not appear to closely resemble one 
another although they actually span the same space. 
This will occur when the two sets are linearly depen- 
dent, i.e., one hasis vector set is a slightly rotated 
version of the other set. When comparing sets of basis 
vectors obtained from separate speakers, we always 
normalized the eigenvectors of each speaker by "ortho- 
gonal rotation to congruence." This well-defined meth- 
ematical procedure, described in detail by both Schone- 
man (1966) and Cliff (1966), minimizes superficial dif- 
ferences between basis vector sets. Figures 2 and 3 
illustrate an example of the apparent differences in 
similarity between two hashs vector sets before and 
after rotation to congruence. In Fig. 2, which depicts 
the basis vector sets of two speakers as determined in- 
itially, apparent similarities are small, whereas in 
F•g. 3, which shows the same hasis vectors after ro- 
tation to congruence, similarities are obvious. 

II. METHODOLOGY 

A. Spectral selection and coding 

The particular scales used for encoding spectral 
band energies were (A) non-normalized logarithmic, 
(B) normalized logarithmic, (C) normalized « power 
function, (D) non-normalized « power function, and 
(E) non-normalized linear. 
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FIG. 1. Representation 
of a principal-compo- 
nents low redundancy 
coding and decoding 
system. The Aij and 
Mj are determined from 
from the statistical 

properties of the input 
parameters. 
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cipal-components basis 
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before orthogonal rotation 
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ing, commonly used for scaling psychophysical sensa- 
tions since first proposed by Feclmer (1860), also has 
the property that jnd's (just noticeable differences) in 
loudness are about equal distances on the scale 
thronghout the range of intensities for most speech 
sounds. Linear scaling, tested less thoroughly than the 
other codings, was included in the study primarily to 
test the effects of a clearly nonperceptually appropriate 
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scal. ing on [he analysfs. Normalization, if used, was 
accomplished by scaling frames of spectral data so that 
the sum of the amplitude-coded band energies would be 
constant in each frame. Presumably, better results 
would be obtained using normalization ff the perceptual 
process tends to amplitude normalize prior to extract- 
ing other information features from speech. 

In order to satisfy the assumption that statistical 
variance is a good measure of "information," each data 
component should have perceptual importance propor- 
tional to variance. Therefore all results reported in 
[his study were derived from high-frequency preem- 
phasized speech (6 dB/octave up to 3000 Hz), since 
this preemphasis approximates the equal subjective in- 
tensity contour of hearing (Stevens, 1972). In all cases, 
the silent portions of the speech material were ex- 
cluded from the statistical analysis by using a thresh- 
old to exclude all frames having less than about -40 dB 
of total frame energy relative to the loudest speech 
sections. A total of 20 baud energies were uniformly 
spaced on the perceptual frequency scale of mels since 
this spacing implies that each band energy will make 
an approximately equal contribution to the articulation 
iudex, a measure of perceptual importance (French 
and Steinberg• 1947). The empirical relationship 

m = 2595 log•o(1.//700), 

was used to relate the frequency in reels, m, to [he 
frequency in Hz, /, (Makhoul and Cosell• 1976). Cen- 
ter frequencies for the 20 band energies used in this 
study ranged from 400 reels (298 Hz) to 2300 reels 
(4454 Hz), with each filter having a 100-mel band- 
width, approximately the width of one critical band 
(Zwicker, 1961). 

B. Speech analysis and synthesis 

The speech samples analyzed in this study were re- 
corded in a low noise environment after the high-fre- 
quency preemphasis below 3000 Hz and low-pass fil- 
tering above 5000 Hz at 36 dB/octave (6 pole Butter- 
worth). Recordings were made of five adult male 
speakers and five adult female speakers, each reading 
the phonetically balanced 'Rainbow Passage" (S•idecor 
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and Isshiki, 1965). Each reading lasted about 50 to 60 
s at an average reading rate. Both Li et al. (1969) 
and our own experiments showed that the values of the 
covariance matrix of speech Spectral band energies• 
and thus the principal-components basis vectors• sta- 
bilize after about 30 s of speech. 

All further analysis was performed digitally on a 
PDP-15/20 18 bit minicomputer. Transfer of one- 
quarter speed analog signals to the computer was ac- 
complished with a 9 bit A-to-D converter at a sampling 
rate Of 2.5 kHz (10 kHz real time). Digital data was 
stored on computer DEC tape (about 30 s of speech per 
DEC tape) for later processing. CalculaUons were 
done with floating point arithmetic with no attempt at 
real-time processing. Digitized samples of synthetic 
speech were transferred to a tape recorder at a one- 
quarter real-time rate. 

Figure 4 is a block disgram of the overall speech 
analysis-synthesis system implemented on the com- 
puter. All analysis was performed on 20.0-ms over- 
lapping Hamming-weighted data sequences spaced 12.8 
ms apart. Band energies were computed from LP 
smoothed spectra for some of the pilot experiments, 
but computed directly from FFT obtained spectra for 
the data reported in [his paper. Prior to computing 
band energies from the 256 point FFT's, each power 
spectral point was averaged over five FFT values 
(about 156 Hz) which, in addition to the smoothing 
caused by the 20.0-ms time window, caused the skirts 
of each simulated band-pass filter to overlap adjacent 
filters by about 88 Hz. For each of the amplitude cod- 
ings mentioned above and each speaker, the covariance 
matrix and its eigenvectors were compute•d. For the 
two speaker groups (males and females), group-aver- 
aged basis vector sets were calculated for each ampli- 
tnde coding. 

Speech synthesis was performed using a combination 
spectral principal-components LP vocoder, so that in- 
formation retained by various numbers of principal 
components for various methods could be tested. For 
each principal-components voeoder• principal compo- 
nents were calculated from amplitude-coded band en- 

SYNTHESIZER 

BAND •-• L 
FIG. 4. Speech analysis- 
synthesis system. 
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ergies •_nd the appropriate group-averaged basis vec- 
tors. The 20 band energies were reestimated for syn- 
thesis purposes, using the procedure indicated in Fig. 
1. Fourteen LP coefficients were computed from the 
reestimated band energies for use by the LP synthe- 
sizer. The 14th order LP model was used to insure 

that spectral degradation was due almost entirely to 
the principal-components data reduction, and not to the 
LP spectral modeling of principal-components derived 
spectra. 

.The LB coefficients were computed from the band 
energies by first calculating autocorrelation coeffi- 
cients using the formula: 

2O 

for i: 0,1,.. -4, 

where 

R(i) = ith autocorrelation coefficient, P(f ,,) = band 
level of the nth band, z•f,= bandwidth of the nth band, 
cos(i2•f,) = average of cus(i2u•.) over the nth band, and 
4= number of LP coefficients to be calculated. 

This formula accounts for both the nonuniform band- 

widths of the various filters, and the nonuniform spac- 
ing (on a linear scale) of the filter center frequencies. 
J•fo), representing the filter from DC to 215 Hz, was 
experimentally found to approximately equal 0.2P([•), 
and thus 0.2P(f•) was used for P(/o) in calculating the 
autocorrelation coefficients. The filter from DC to 225 

Hz was not used in the statistical analysis because of 
its very low COntribution to the articulation index. 
Durbin's recursire procedure (Makhoul, 1975) was 
used to determine the LP coefficients from the auto- 

correlation coefficients. 

In order to avoid problems of pitch detection and es- 
timation that frequently plague vocoders (for example, 
McGonegal et al., 1977), the LP residual was calcu- 
lated in the analysis stage of the vocoder and used for 
vocoder excitation in the synthesizer. A 14th order LP 
inverse filter, rather than the more customary 10 or 
12 coefficient filter, was used to minimize the informa- 
tion content ot the residual signal. Both listening tests 
and examinations of spectrograms indicated that the 
LP residual contained only minimal spectral informa- 
tion. Attempts to further reduce reinanent spectral 
information in the LP residual by center clipping pro- 
duced little noticeable difference in the auditory quality 
of the residual signal, but did introduce an annoying 
harshness in resultant synthetic speech. 

Prior to incorporation of the principal components 
into the vocoder, the basic LP vocoder was tested and 
optimized. Initial testing indicated that a 20.0-ms 
analysis frame resulted in somewirer higher quality 
synthetic speech than either a 17.0- or 25.6-ms analy- 
sis frame; therefore the 20.0-ms analysis frame was 
used for both the vocoder and the FFT analysis frame 
length. Speech synthesized from the basic LP vocoder 
(14 LP coefficients, autocorrelation method, 20.0-ms 
analysis frame, 12.8-ms frame update rate, residual 
excited) was found to be almost indistinguishable from 
the original speech. Speech synthesized using 14 LP 

coefficients derived from 20 band energies (that is, no 
principal-components data reduction) was found to be 
extremely high in quality• but somewhat inferior to the 
basic 14 pole LP vocoder, as described above. 

Two types of control vocoders were used for compar- 
ison with principal-components vocoders. One type of 
control vocoder was an LP vocoder with the same num- 

ber of parameters as the corresponding test principal- 
components vocoder. The other control vocoder used 
was a linear predictive spectrally warped (LPCW) vo- 
coder, which is an LP vocoder which matches the LP 
model spectrum to the speech spectrum more closely 
at low frequencies than at high frequencies (Makhoul 
and Cosell, 1976). Except for the spectral warping 
property of the LPCW vocoder, the LP and LPCW vo- 
coders were the same. For the control vocoders, en- 
ergy was counted as one parameter since the signal 
energy is included in the principal components. Thus, 
for example, a four parameter LP vocoder has three 
LP coefficients plus signal energy as the fourth param- 
eter. 

All vocoders, both principal-components and control, 
were identical except for the method used to encode the 
spectral information. For the principal-components 
vocoders, spectral information was encoded by the 
principal components. For the LP and LPCW control 
vocoders, spectral information was encoded in terms 
of the LP coefficients. The analysis frame time, frame 
update rate, and excitation signal were the same for all 
vocoders. Except for one experiment in which white 
noise was used as the excitation, the LP residual sig- 
nal (obtained from a 14 pole LP inverse filter in 
cases) was used as the excitation signal. 

C. Intelligibility testing procedures 

The ultimate criterion for evaluating principal-com- 
ponents techniques for use in encoding speech spectra 
is the amount of speech information which is retained 
-by a given number of components and/or the data rate 
oI those components. We felt that the most practical 
method for measuring this information was to measure 
the intelligibility and quality of speech synthesized from 
the principal components. In the present study, we 
have characterized our data-reduction methods in 

terms of the number of "stowing varying" parameters 
rather than the data rate of those parameters, although, 
presumably, data rate is closely related to the number 
of parameters. Moreover, for speech preprocessing in 
certain fields (such as sensory substitution for the 
deaf), characterization of speech compression systems 
in terms of the number of parameters may be more 
useful than characterization in terms of data rate. 

A form of the Diagnostic Rhyme Test (DRT) devel- 
oped by Voiers et al. (1973) was used for evaluating 
speech intelligibility. The task of the listener in the 
DRT is to distinguish befween minimally contrasting 
rhyming words of a word pair. In our test, we u•ed a 
subset of 30 word pairs from the DRT (five word pairs 
from each of the six feature categories included in the 
DRT), plus ten additional word pairs. The added word 
pairs, all CVC words, contrast vowels closely spaced 
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in the F1-F2 vowel plane rather than initial conso- 
nants, as do all the word pairs in the standard DRT. 
The decision to use strictly consonant pairs in the DRT 
is based on the obse•ivation that the bulk of the infor- 
mation in English is carried by the consonants. How- 
ever, we added the contrasting vowel pairs to the test, 
since an intelligible and natural sounding speech sys- 
tem should faithfully transmit the vowel sounds. 

The actual word pairs used for testing are given in 
Table I. From the word pairs, randomized word lists 
were made with the first or second word of a pair ran- 
domly selected. These randomized word lists were 
processed by each vocoder. A panel of listeners eval- 
uated the vocoder output speech, hearing blocks of 20 
words from a particular vocoder. The twenty-word 
blocks were randomized among the various vocoders 
and listeners to minimize effects due to training, bore- 
dom, or fatigue. 

Since the acceptability of the output of a voice com- 
munication system can be influenced by factors other 
than intelligibility (Voters, 1977), we also used an A/B 
paired sentence preference test for evaluating the qual- 
ity of our principal-components vocoders. For this 
sentence test, listeners were instructed to select the 
sentence Of a pair (identical sentences except for pro- 
cessing method) which they believed to be more "natu- 
ral sounding," without particular regard to intelligibil- 
ity. The following seven sentences Were chosen for use 
in the sentence preference experiment because they are 
representative of a large variety of speech events, are 
fairly short, and also have been used in previous simi- 
lar experiments (McGonegal ½t.al., 1977; Huggins ½! 
al., 1977): 

(1) We were away a year ago. 

(2) I know when my lawyer is due. 

(3) Every salt breeze comes from the sea. 

(4) I was stunned by the beauty of the view. 

TABLE I. Word pairs for modified DRT intelligibility test. 

1. Veal-Feel 21. Weed-Reed 
2. Bee--Yea 22. Tea--Key 
3. Meat--Beat 23. Heed-Hid 

4. Keep-Cheep 24. Cut-Cot 
5. Dune-Tune 25. Pool-Tool 
6. Choose-Shoes 26. Rue-You 
7. News-Dues 27. Hid-Head 

8. Goose-Juice 28. Caught-Cot 
9. Zeal-Said 29. Met-Net 

10. Den-Then 30. Wren--Yen 

11. Mend-Bend 31. Head-Had 
12. Care-Chair 32. Bud-Bird 

13. Daunt-Taunt 33. Bong-Dong 
14. Chaw-Shaw 34. Taught-Caught 
15. Gnaw-Daw 35. Pad-Pod 

16. Gauze-Jaws 36. Hood-Heard 
17. Bond-Pond 37. Wad-Rod 

18. Bon-Von 38. Dot-Got 

19. Morn-Bomb 39. Caught-Cut 
20. Cop-Chop •40. Should-Shoed 

(5) His vicious father has seizures. 

(6) The little blankets lay around on the floor. 

(7) The trouble with swimming is that you can drown. 

Ill. SPEECH SPECTRAL DATA 

Figure 5 shows the spectral mean values and vari- 
ances for the logarithmically amplitude-coded non-nor- 
malized spectral band energies. The data is normal- 
ized and displayed as percent of the total The spec- 
tral means tend to be relatively constant versus fre- 
quency for both speaker groups except for rather broad 
peaks around 500 and 2200 Hz. The spectral variances 
depend on frequency to a larger degree than do the 
spectral mean values, but are almost always between 
2% and 8%. Thus if any band energies were deleted 
from a channel roeoder speech synthesizer, between 
2% and 8% of the total variance would be deleted. The 
between-speaker differences for the variances are the 
largest in regions corresponding roughly to the formant 
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FIG. 5. Mean values and variance of logarithmically ampli- 
tude-coded non-normalized spectral band energies. Data are 
the average from five speakers for each curve. Vertical bars 
represent two standard deviations. 
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locations near 600, 1500, and 3000 Hz for the male 
speakers, and near 400-800 Hz and near 1800-2500 Hz 
for the female speakers. The spectral mean-value and 
variance plots obtained from the other amplitude cod- 
ings used in this study are similar to the ones shown in. 
Fig. 5. 

Plots of group-average cumulative variance as a 
function of the number of principal-components basis 
vectors are shown in Fig. 6. These data show that the 
speech spectral band energies are highly correlated, 
since a very high percentage of total spectral variance 
can be accounted for with a small number of dimen- 

sions. For example, the first five principal components 
contain about 90o• of the total variance. Plots were also 
made of cumulative variance versus number of princi- 
pal-components dimensions for the other nonlinear am- 
plitude codings investigated in this study in order to ob- 
tain preliminary comparisons of the performance of the 
various amplitude scales. If these various amplitude 
codings were to be ranked in terms of most cumulative 

variance for a given number of dimensions, the results 
for both the female and male groups would.be norma[- 
ized logarithmic (coding B), non-normalized 1ogarith- 
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FIG. 6. Cumulative variance as a function of number of dimen- 
sicms (principal components) for logarithmically amplitude- 
coded non-normalized spectral band energies. Data are the 
average from five speakers for each curve. Vertical bars 
represent two standard deviations. 

mic (coding A), non-normalized • power function (cod- 
ing D), norma!ized -• power function (coding C). For 
example, using five dimensions, coding B accounts for 
about 92• of the variance and coding C about 87% of the 
variance. These rankings are based strictly on maxi- 
mum variance for a given number of dimensions and 
are, in fact, different from those obtained from the 
speech synthesis experiments. 

The eigenvectors for the varibus speakers were ob- 
tained individually and orthogonally rotated to congru- 
ence before averages and between-speaker differences 
were computed. However, the e/genvectors obtained 
for the various individual speakers tended to be fairly 

_similar even prior to rotation to congruence. In l•ar- 
.tfcular, the first four or five basis vectors were very 
similar. A practical problem associated with the orth- 
ogonal rotation to congruence procedure is that the ro- 
tation merely rotates the basis vectors of one set to- 
ward those of another set and is not a general tech- 
nique for optfinally rotating several basis vector sets 
toward common congruence. Therefore we adopted the 
somewhat ad hoc procedure of choosing a typical speak- 
er for each group whose eigenvectors appeared to be 
most representative of the speakers within that group 
and rotated the eigenvectors of all the other speakers 
within the group toward those of the typical speaker. 
The first four group-averaged basis vectors are shown 
in Fig. • for the male speakers for the non-normalized 
log-coded speech spectral data. The corresponding 
basis vectors for the female speakers are shown in 
Fig. 8. 

Very roughly speaking, these basis vector sets are 
similar to a Fourier series basis vector set. This 

type of basis vector set was theoretically predicted by 
Yilmaz (1967) for speech spectra encoded with per- 
ceptual amplitude and frequency scales and also is sim- 
ilar to the eigenvector set obtained in the experimental 
study by Liet al. (1969)o The first basis vector is 
roughly constant as a function-of frequency and thus the 
first principal component will be a measure of energy. 
The second basis vector, as a function of frequency, 
is similar to one negative cycle of a sinusDid from 
about 300 to about 4500 Hz with a crossover at about 

1500 Hz. The second principal component, together 
with the first principal component, will be a measure 
of the spectral mean. Therefore the second principal 
component will be an indication of whether the spectrum 
is more heavily weighted below 1500 Hz (for example, 
most vowels) or more heavily weighted above 1500 Hz 
(for example, most fricatives and consonants), and will 
help separate those vowels having a high F2 from those 
having a low F2. The third and fourth basis vectors 
give information about increasingly specific parts of the 
spectrum. For example, eigenvector three is most 
heavily peaked between 300 and 500 Hz (slightly lower 
than the most common first formant frequencies), 
whereas eigenvector four tends to be most heavily 
peaked in the second formant range of 1500 to 2000 Hz. 

Basis vectors obtained from normalized spectra ten• 
to be similar to the basis vectors for the non-normal- 

ized spectra, described above, except displaced by one 
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number. That is, for the normalized spectra, there is 
no constant vector, basis vector one is similar to the 
second basis vector for the non-normalized spectra, 
and so on. For the higher numbered vectors, the 
ilarities bet•veen corresponding (displaced by one num- 
ber) basis vectors of normalized and non-normalized 
spectra are less than for the smaller numbered vec- 
tors. 

Basis vectors obtained from «-power-function-coded 
spectra are similar to the basis vectors shown in Fig. 
7 and Fig. 8. However, the basis vectors obtained 
from power-function-coded spectra are generally less 
smooth than those from the log-coded spectra. Also, 
the between-speaker differences are usually larger for 
the power-function coding than the log coding. 

comparison of Fig. 7 and Fig. 8 shows that the basis 
vectors for males and females are quite similar for the 
first two basis vectors. For basis vector two, even 
the crossover frequencies are very close. However, 
the higher-ordered basis vectors for the female speak- 
ers are shifted noticeably higher in frequency than for 
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the corresponding male basis vectors. For example, 
the dominant peak in basis vector four is about 100 
mels higher (1900 versus 1600 Hz) in frequency for the 
female group than for the male group. This frequency 
shift corresponds approximately to the average differ- 
ence between the second formant frequencies of male 
and female speech. For our limited group, it is also 
seen that the within group variability is less for the 
females than the males. 

IV. SPEECH INTELLIGIBILITY AND SPEECH 
QUALITY EXPERIMENTS 

In this section, we present the results of speech syn- 
thesis experiments conducted to evaluate the intelligi- 
bility and quality of speech synthesized from spectral 
principal components. For all the speech synthesis ex- 
periments, speech systems were characterized in 
terms of the number of spectral parameters and not by 
the bandwidth required to transmit those para.meters. 
Therefore all principal components (for the experimen- 
tal principal-components vocoders) and LP coefficients 
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(for the control vocoders) were updated at the same 
rate as the vocoder analysis frame update rate (once 
every 12.8 ms) with full floating point precision, and no 
attempt was made to determine the effect of parameter 
bandwidth on intelligibility. 

Based on the results of informal listening experi- 
ments, we concluded four parameter systems were the 
most useful for evaluating differences among the prin- 
cipal-components variables of this study (spectral 
band-energy amplitude scales). Some reasons are (1) 
speech synthesized from any of the three parameter 
systems seemed to be marginal in both quality and in- 
telligibility. (2) There seemed to be substantial over- 
all improvement between three parameter and four pa- 
rameter systems. (3) Within the four parameter sys- 
tems, there appeared to be fairly large differences (at 
least in terms of speech quality) among the different 
systems. (4) The overall improvement between four 
and five parameter systems was much less than the 
improvement achieved by changing to four parameters 
from three parameters. (5) The informal tests also 
indicated that the differences in intelligibility scores 
for speech synthesized from five or more principal 
components would be relatively small. Since the four 
parameter systems were tested more extensively than 
the other systems, confidence intervals, indicating plus 
or minus one standard deviation, are indicated only 
for the test results of the four parameter systems. 

Informal listening tests also indicated that speech 
synthesized from principal components based on linear 
spectral amplitude coding was substantially poorer in 
quality and intelligibility than the speech synthesized 
from principal-components systems based on the non- 
linear scales investigated in this study. Therefore the 
linear amplitude scaling was not included in the more 
complete intelligibility tests reported in this section. 

In total, five speakers (three males and two females) 
were used for the synthesis experiments reported in 
this paper. None of the speakers used in the intelligi- 
bility experiments had been used in the earlier statis- 
tical analysis experiments; however, two of the speak- 
ers used for the sentence preference experiment had 
been used as subjects for the statistical analysis ex- 
periments. All speech synthesis was performed using 
group-averaged principal-components basis vectors. 
The only speaker-dependent terms used in speech syn- 
thesis were the average value terms, i.e., the M• from 
Fig. 1. The Mj terms represent a rather complex but 
nontime-varying filter. This filter function was calculated 
separately for each speaker, using about 10 s of 
speech, since informal listening tests indicated slight 
losses in quality when only one filter was used for all 
speakers. However, because this filter is nontime- 
varying for each speaker, the information rate to spec- 
ify the parameters of the filter is negligible. 

The listening crews for each of these experiments 
consisted of eight to ten young adults--about half males 
and half females. The listeners were not given any 
training for the experiments, and the scores reported 
were obtained from listening to all the test materials 
once. AbOut half the listeners participated in either 

two or three of the experiments and therefore were 
somewhat "experienced" in the later experiments. For 
all listening experiments, volume levels were adjusted 
to a conversationally comfortable level. The test ma- 
terials were presented binaurally over headphones in a 
room with relatively little background noise. 

A. Intelligibility experiment 1 

This test was performed for one male speaker with a 
panel of eight listeners using the modified DRT dis- 
cussed above with the 80 words from Table I. The in- 

telligibility scores for principal-components and con- 
trol vocoders of three, four, and five channels are de- 
picted in Fig. 9. All intelligibility scores are given in 
terms of percent correct , after adjusbnent for the ef- 
fects of chance using 

Pc =(R- W)/T , 
where 

Pt= percent correct, a•ter adjustment for chance, 
R= number of correct responses, W= number of in- 
correct responses, T= total number of responses. 

From Fig. 9 we see that the five parameter princi- 
pal-components systems are about 80% intelligible, the 
four parameter systems about ?5% intelligible, and the 
three parameter system about 62% intelligible. The 
only principal-components system which appears to 
be significantly poorer than the others is system D 
(non-normalized « power-function coding). For the 
four parameter systems, the hypothesis that system 
D is the poorest principal-components vocoder and that 
the LP vocoder is worse than the LPCW vocoder, can 
be accepted at the 95% confidence level. The intelligi- 
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FiG. 9. Modified DR? speech intel[igib[[ity scores for various 
principal-components and control vocoders. Vocoder excita- 
tion was the LP residue[ in all eases. Vertical bars represent 
two standard deviations for the four parameter systems. 
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bility scores for the LPCW control vocoder were 
somewhat higher than those for the LP control vocoder 
for both four and five parameters. Other results ob- 
tained from intelligibility experiment 1 are 

(1) Contrasting vowel pairs were typically easier to 
differentiate than contrasting consonant pairs (vowel 
scores typically about 10% higher than consonant 
scores). 

(2) The intelligibility scores for the LP residual av- 
eraged about 14%. 

(3) The intelligibility scores for both the original 
speech and vocoded speech obtained with a 20 channel 
vocoder averaged about 90%. This result indicates that 
many of the word distinctions, as pronounced by this 
speaker, were apparently less clear than optimum and 
therefore this speaker was not used in other experi- 
ments. 

B. Sentence preference experiment 

Altogether, four speakers and seven sentences were 
used in the A/B paired sentence preference test, de- 
scribed in Sec. IIC to test the speech quality of various 
principal-components vocoders. The ten subjects par- 
ticipating in the experiment were asked to select that 
sentence of a pair which "sounded better,, using their 
personal evaluation criteria. In the experiment, a total 
of 160 preference judgements were made by each sub- 
ject. All sentence pairs were used twice with the order 
of repetition interchanged to eliminate possible subject 
biases toward selecting the first or second sentence of 
a pair. About 2 s were allowed between sentences of a 
pair and about 4 s between sentence pairs. 

The largest percentage of the comparisons were be- 
tween those three, four, and five channel principal- 
components vocoders which appeared to be the best (A, 
B, and C). Type D principal-components vocoder (non- 
normalized • power-function coding) was not tested as 
extensively, since both the first intelligibiltiy experi- 
ment and informal listening experiments rated this vo- 
coder to be uniformly poorest in performance. Some of 
the sentence pairs were also used to make compari- 
sons between principal-components and control vo- 
coders. 

The test sentences for the preference experiment 
were also used to obtain an estimate of word intelligi- 
bility within a sentence context. Prior to making the 
sentence comparisons, the subjects listened to one 
repetition of each sentence, synthesized from four 
principal components corresponding to method B, and 
were asked to record each sentence. On the average, 
the subjects correctly identif,ied about 95% of the 51 
words in the seven test sentences. 

The primary results of the sentence preference ex- 
periments are depicted in Fig. 10. Results are given 
in terms of mean percent preference, with averages 
t•ken as follows. Principal-components vocoders A, 
B, and C were compared against each other and the 
mean preferences are based on these comparisons. 
Principal-components vocoder D was compared with 
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FiG. 10. Sentence preference ratings for various principal- 
components roeoders and the LPCW control vocoder. All data 
shown are for comparisons of sentences synthesized from the 
same number of parameters. Vertical bars represent two 
standard deviations for the four parameter systems. 

vocoders B and C, and the score indicated is the. av- 
erage of these two scores. The LPCW control vocoder 

score is strictly based on a comparison with principal- 
components vocoder A. For the results shown in Fig. 
10, comparisions were made only among vocoders with 
the same number of parameters. Not all systems were 
compared with all other systems because of the large 
amount of testing that would have been required. 

The data for the female speakers in Fig. 10 show that 
ß among the principal-components systems with highest 

intelligibility (A, B, •md C), system A (non-normalized 
log coding) is'a strong favorite. Next in order of pref- 
erence are systems B and C with fairly similar rat- 
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ings. System D, with the worst intelligibility rating, 
also had a preference rating 'substantially worse than 
for the other systems. Note that system D averaged 
only about 25% preference even though it was only com- 
pared with the third and fourth place systems B and C. 
The LPCW control vocoder has a substantially lower 
rating than the best principal-components vocoder, es- 
pecially for four parameters, for which the control 
vocoder was never preferred by any of the subjects. 

The data from the male speakers in Fig. 10 show that 
systems A, B, and C all receive about the same rat- 
ings, and only system D appears to be clearly less pre- 
ferred. If, however, we continue to argue that the four 
parameter data is the most significant, principal-com- 
ponents vocoder A is a slight favorite. The LPCW con- 
trol vocoder again has a tower rating than principal- 
components vocoder A, especially for four parameters. 
For both the male and female speakers, the majority 
of the data obtained from the' various listeners was 

within about +15% of the mean preference for all lis- 
teners, as indicated by the confidence intervals for the 
four parameter systems. 

C. Intelligibility experiment 2 

An additional intelligibility experiment was performed 
using one male and one female speaker with the 80 
words from Table I. This experiment tested only three 
and four parameter versions of principal-components 
systems A, B, and C and the LPCW vocoder. This in- 
telligibility experiment differed from all the other 
speech synthesis experiments in that the vocoder sound 
source in this experiment was Gaussian band-limited 
(0 to 5 kHz) noise. This sound source was chosen so 
that the synthetic speech information would be entirely 
derived from the spectral parameters, and so that the 
synthetic speech intelligibility scores would (hopefully) 
be somewhat lower than corresponding scores ob- 
tained from an LP residual-excited vocoder and more 

sensitive to the information contained in the spectral 
parameters. This particular artificial sound source 
was chosen because it is similar to the human sound 

source for whispered speech; thus the synthetic speech 
in this experiment sounded somewhat like a hoarse 
whisper. The original speech material for this test 
was found to be about 99% intelligible in another inde- 
pendent experiment. 

Hesults of the experiment, in terms of percent cot-, 
rect after adjustment for the effects of chance, are 
shown in Fig. 11 for one male speaker and one female 
speaker. The scores are about 80% for the four pa- 
rameter systems and about 70% for the three param- 
eter systems. In this experiment, there seems to be 
no universal clearcut preference among the various 
principal-components systems. For the case of four 
parameters, however, the hypothesis that all the prin- 
cipal-components vocoders are better than the LPCW 
vocoder can be accepted at the 95% confidence level. 
The scores for the female speaker are also universally 
higher than the corresponding scores for the male 
speaker. In spite of the absence of a "natural" sound 
source for the vocoders used in this experiment and the 
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FIG. 11. Modified DRT speech intelligibiiit7 scores for 
various principal-components vetoders and the LPCW control 
vocoder. Band-limited Gaussian noise was used for the voeo- 

der excitation in all cases. Vertical bars represent two stand- 
ard deviatious for the four parameter systems. 

use of untrained listeners as subjects, the average in- 
telligibility scores shown in Fig. 11 are somewhat high- 
er than those shown in Fig. 9, presumably due to the 
much greater clarity of speech for the speakers in this 
experiment, compared to the speaker used for Fig. 9. 

V. CONCLUSIONS 

The results of this study indicate that it is possible 
to encode a very high percentage of speech information 
with as few as three to five spectral principal compo- 
nents. The intelligibility of speech synthesized from 
principal components, based on modified DRT intelli- 
gibility scores, can be summarized as follows: Speech 
synthesized from three principal-components .spectral 
parameters is about 70% intelligible, speech synthe- 
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sized from four parameters is about 8(F/o intelligible, 
and speech obtained from five parameters is about 85% 
intelligible. Speech synthesized from the best princi- 
pal-components vocoders is at least as intelligible, or 
perhaps slightly more intelligible than speech synthe- 
sized from LP and LPCW vocoders with the same num- 

ber of parameters. The exact interpretation of these 
intelligibility scores obtained within the restricted 
framework of the DRT is unknown. However, we did 
find that about 95% of the words in unfamiliar short 
sentences were correctly identified for the four param- 
eter systems (80% intelligibility score with the DRT). 

Principal-components basis vectors obtained from 
speakers of the same sex are very similar. Basis vec- 
tors derived from female speech are fairly similar to 
those derived from male speech except that some of the 
female basis vectors are shifted toward higher fre- 
quencies relative to the basis vectors of male speak- 
ers. In general, the principal-components basis vec- 
tors corresponding to the largest covariance matrix 
eigenvalues are largely speaker independent, whereas 
the basis vectors corresponding to the smallest covar- 
ia•ce matrix eigenvalues vary most from speaker to 
speaker. 

The particular spectral amplitude measurement 
scale used with a principal-components analysis is not 
critically important provided at least some nonlinear 
scale compression is used. However, of the scales 
tested in this study, based on the combined results of 
intelligibility tests, a sentence preference test, and 
informal listening tests, the order of preference for 
speech spectral amplitude scales is (1) non-normalized 
logarithmic (ceding A), (2) normalized logarithmic 
(ceding B), (3) normalized « power function (coding C), 
(4) non-normalized « power function (coding D), and 
(5) non-normalized linear (coding E). The differences 
between codings A, B, and C are fairly small, whereas 
the difference between coding C and D is larger, and 
the difference between D and E is quite large. 

In summary, our study indicates that the linear scale 
is clearly the poorest as a measurement scale for 
speech spectra if mean-square error is used to mea- 
sure differences between spectra, and that the dB scale 
is slightly preferred over a sone scale. The prefer- 
ence for the dB scale over the sone scale may seem 
surprising in that the sone scale is the psychophysical 
ratio scale for loudness. However, we believe the 
preference for the dB scale over the sone scale arises 
from the fact that jnd's increase in magnitude on the 
sone scale for larger sone values whereas jnd's are 
roughly a constant number of dB for various speech 
levels. Thus if we make the assumption that the per- 
ceptual distance between two fairly similar speech 
sounds is more related to the total number of jnd's 
separating the spectra than their absolute difference on 
a perceptual ratio scale, then the dB scale is to be pre- 
ferred over. the sone scale. To compare with a simple 
example, the scale of centimeters is approximately a 
perceptual ratio scale of distance. However, in de- 
scribing the differences between the lengths of two 
lines, the percentage differences are probably more 

important perceptually than the absolute differences in 
centimeters. ., 
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