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A Matched Delay Approach to Subtractive Linear
Phase High-Pass Filtering

TAK KWONG NG anp MARTIN ROTHENBERG

I. INTRODUCTION

When removing additive noise outside the frequency range of a
desired signal by high-pass or low-pass filtering, a linear phase
response (a phase shift proportional to frequency) within the
passband best preserves the waveform of the signal, except for a
time delay proportional to the slope of the phase response.
Though techniques for linear phase low-pass filtering are well
known, analog methods for constructing linear phase high-pass
filters are not generally discussed in the standard references on
filter design, except for the case in which the passband is small
compared to the high-pass cutoff frequency (i.e., the bandpass
case). This paper presents a semianalog method for linear phase
high-pass filtering that does not have this restriction.

To reduce the phase distortion in an analog high-pass filter, it
would be necessary to have a phase shift at the highest frequency
of interest in the passband f;, that is larger than the phase shift
at the low frequency limit f, by the ratio f; /f;. The phase shift
at the band edge f; typically ranges from about #/4 radians in
the simplest filter to five or ten times that figure in more complex
and powerful filters. If f;, > f, , the required high frequency phase
shift is very large. To obtain this phase shift by standard analog
methods, i.e., with a circuit having a rational Laplace transform,
it is necessary to have an impractically large number of poles and
zeros, since the phase shift due to each pole or zero is limited to
90°. (The same relation between f;; and f; holds for a low-pass
filter, but there is no resulting large phase shift required, since the
largest phase shift in the passband would occur at the band edge
fu, and have a magnitude similar to that of f, in the high-pass
case.)

The linear phase high-pass filter presented here consists of two
forward paths as shown in Fig. 1. The high-pass characteristic is
obtained by subtracting the output of a low-pass forward path
(H, in the figure) from the output of an all-pass network (H,).
We shall refer to this type of system as a “subtractive” high-pass
filter.

The case in which H,=1 is shown by [I] to result in a
high-pass filter with little overshoot and an asymptotic rejection
of 20 dB/decade for any rational transform low-pass filter H,,
independent of the order of H,. However, since this type of
subtractive high-pass filter still has a rational transform it cannot
approach a linear phase response without having an extremely
high number of poles.

In this paper, we discuss the case in which H, is a low-pass
filter having a relatively linear phase (constant delay) characteris-
tic, and H, a delay element matched to the delay of H,. We will
call this case a “matched-delay subtractive” (MDS) high-pass
filter. If H, is an ideal delay, with frequency response ¢ /¥, and
H, a perfectly linear phase low-pass filter, with a freqmency
response |H,(jw)|e™/A“, then both H, and H, would have a
delay equal to B8, and the overall frequency response would be
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Fig. 1. Block diagram of a matched delay subtractive (MDS) high-pass filter.

[1—|H,(jw)|l€ 2. The magnitude factor [1— | H,(jw)|] is the
amplitude response and is clearly that of a high-pass filter, while
the phase factor e A signifies a linear-phase response.

II. MDS FILTER USING A BESSEL Low-PAss ELEMENT

Consider the case in which H, is a perfect delay, and H, is a
realizable low-pass filter with a rational transfer function. To
achieve a uniformly good rejection in the stopband of the high-
pass filter H = H, — H,, the phase response of the low-pass filter
H, in its passband must closely approximate that of the delay H,,
and so be of nearly linear phase. For H to have a linear phase
response in its passband, the low-pass filter H, must have a linear
phase response near its cutoff frequency. (The phase response at
frequencies far into the low-pass stopband is not as important,
since the high-pass phase response in this region is determined
primarily by the delay element H,.) If H, is to be realized by an
all-pole network of order N, a maximally linear-phase approxi-
mation occurs with a Bessel (or Bessel /Thomson) low-pass filter
[2]. For large N, the magnitude of the transfer function of a
Bessel filter becomes increasingly Gaussian, and the amplitude
response of the entire filter is therefore approximately 1— o’
with a a function of the cutoff frequency. Expanding €= about
w=0, we find that for small w, the amplitude response ap-
proaches 1—(1 — aw?) = aw?. An amplitude response asymptoti-
cally proportional to w? means that the slope of the amplitude
response is asymptotic to 40 dB/ dzecade. The —3-dB frequency f,
of the filter occurs when 1— ¢ ““"=1/2, and is related to a by

—L\/—lln(l—l) Z‘/O.O3ll
Y « 2 a

We might then expect that if H, is approximated with a Bessel
filter of high enough order, the response of the filter will become
relatively independent of the order of the approximation, and
approach a rejection of 40 dB /decade for a range of frequencies
that increases with the order. This is illustrated in Fig,. 2, in which
the frequency response of an MDS linear-phase high-pass filter is
computed for H, approximated by Bessel filters of increasing
order. The phase error shown in the figure is the deviation from
the delay of H,. All filters were normalized for the same asymp-
totic rejection at low frequencies, with the delay H, matched to
the Bessel low frequency phase response. The frequency normal-
ization is arbitrarily set to make the cutoff frequencies of. the
various filters somewhere near w =1. On this scale, the amplitude
response with a Gaussian filter would be nearly indistinguishable
from the response with the sixth-order Bessel filter. It can be seen
from the figure than for orders greater than about two, the
primary effect of increasing the order of H, is to reduce the phase
error near the cutoff frequency, with amplitude response chang-
ing very little. To facilitate a comparison with more conventional
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Fig. 2. Amplitude response and phase errar for an MDS filter having a
Bessel low-pass element of the order shown in the figure.
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Amplitude response and phase error for a number of high-pass filter

configurations. 1) MDS filter with a third-order Bessel low-pass element. 2)
MDS filter with an ideal Gaussian low-pass element. 3) Second-order But-
terworth high-pass filter. 4) Second-order high-pass filter having two identi-
cal real poles and two zeros at the origin.

rational-transform filters, Fig. 3 compares the amplitude response
of two Bessel-derived MDS filters (a third order Bessel and an
ideal Gaussian) with a second-order Butterworth high-pass filter
and a high-pass filter with two identical real poles. All filters were
designed for the same asymptotic rejection at low frequencies. It
can be seen in Fig. 3 that the amplitude responses of the MDS
filters are similar to that of the two-pole Butterworth filter, and
significantly better than that of the double real-pole filter. The
phase responses of the standard filters are obviously much worse
than those of the MDS filters.

The performance of an MDS filter depends on the matching of
the delays of H, and H,. The affect of a gain mismatch would
primarily affect the maximum attainable attenuation, and there-
fore can be easily trimmed by minimizing the output of the filter
at low frequencies. A gain mismatch of 1 percent would result in
a maximum attenuation of 40 dB.

To illustrate the affect of a delay mismatch, Fig. 4 shows the
computed frequency response of a third-order Bessel MDS filter
with the delays mismatched by *2 and =5 percent. Also in-

cluded for comparison is the case of no delay, which corresponds
to the subtractive filter proposed by Blinchikoff. As proven by
Blinchikoff, the zero-delay filter has an asymptotic rejection of 20
dB /decade, as compared to the 40 dB/decade we have shown
holds for the matched-delay case. With a delay error of 5 percent,
the amplitude response follows the matched delay response within
1 or 2 dB down to a rejection of about 20 dB, at which point the
attenuation begins to decrease to 20 dB/decade. With a delay
error of 2 percent, the amplitude response is not affected signifi-
cantly down to a rejection of about 40 dB. Thus both the delay
and the gain of an MDS filter could be trimmed by minimizing
the output at low frequencies, but to trim the delay accurately it
would be necessary to use the lowest possible frequency. For
example, to match delays to within 1 percent it would be neces-
sary to use a frequency at least a decade below the cutoff
frequency.

The maximum phase error within the passband also changed
very little for delay errors of as large as 2 percent. Since the phase
response in the passband stays relatively unchanged, the degrada-



586 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-29, NO. 8, AUGUST 1982

MDS WITH BESSEL LOW-PASS
(3rd ORCER)

=
DEGREES

Eol}

(a)

(b)

Fig. 4. Amplitude response and phase error for a third-order Bessel-derived
MDS high-pass filter with variation of the delay H,.
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Fig. 5. Amplitude respdnse and phase error for an MDS filter having a
Butterworth low-pass element of the order shown.

tion of signal waveforms within the passband caused by phase
error is increased very little by small errors in delay matching.

III. MDS FILTER USING A BUTTERWORTH Low-Pass
ELEMENT

Though their maximally linear phase response make the Bessel
filters a good choice for the low-pass section of an MDS filter, we
have shown that their gradual cutoff characteristic limits the
high-pass response to 40 dB/decade. In some applications, it
may be desirable to sacrifice some degree of linearity in the phase
response of the high-pass filter if a sharper cutoff than 40
dB/decade can be attained. We will show that such a tradeoff
can be accomplished using a Butterworth low-pass filter, since
the low frequency response of a Butterworth-derived MDS filter
falls off asymptotically at 60 dB/decade, provided the order of
the Butterworth low-pass filter used is at least two. It will also be
shown that the resulting phase distortion (deviation from linear-
ity) of the response in a Butterworth-derived MDS filter occurs
primarily near or below the cutoff frequency, and may be accep-
table for many applications.

If
H(jw)=H(jo)— Hy(jw)
as in Fig. 1, then from vector algebra it follows that
|H|?=|Hy\|* + |Hy|* =2| H| | Hy| cos (¢, — ¢,)

where ¢, and ¢, are the phase angles of H, and H,, respectively,
with all H and ¢ functions of w.

If H, is a Butterworth low-pass filter of order N, and H, a
perfect delay matched to ¢, at low frequencies, then [3]

1

H|*=—
© WM+
¢ = 2
p C(2M+1
M—0(2M+1)sm——-———( SN )7
|Hy|? =1
. w
¢ = lim ¢, = ————.
w— —_—
sin5—
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In forming (¢, — ¢,), the subtraction of ¢, removes the first term
from the summation for ¢,, and | H|? is then given by

|
2
"= l-#-w“/-*-1

l o0
cos: 3,

M=l (2M+1)sin

w2M+l

CeM+1)a
2N

1+ o?¥

As w — 0, the argument of the cosine function approaches the
first term in the summation, since the power of w is higher in all
other terms. In addition, we can approximate the cosine function
with the first two terms in the expansion

2 4 6

XX X ..
cosx =1 2!+4! 6!+
This yields
2
1 1 1 o’
|H|* =~ +1-2 -=
1+ w2V 1+ w2V . 3w
-0 —
w 3sm2N
2
1 @
~ +1—
1+ w?V -2 1+w2N+ 3sin T
2N

2
1 ) W’
~ =) — +| ==
2N
( I+ 3sin23—;

Since y1/(1+w?") approaches 1—(1/2)w?" as w— 0, we

can write

2 3

=)

3sin—

2N
For N>1, the second term dominates as w— 0, and |H| is
proportional to «, for an asymptotic variation of 60 dB/decade,
independent of the order N. However, for N =1, the first term
dominates at low frequencies, and the asymptotic gain variation
is only 40 dB/decade. The resuit for N=1 is to be expected,
since the form of the filter for N =1 is the same as for the

first-order Bessel-derived MDS filter.

These results are verified by the computer simulation of the
Butterworth-derived MDS filter shown in Fig. 5. The simulation
is carried out for Butterworth filters of orders 1, 2, 3, 4, and 6. It
can be seen that for N > 1, the rejection below the cutoff frequency
is much sharper than with a Bessel filter, and that there is a much
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sharper “corner” in the response near the cutoff frequency. In
fact, for the higher order filters, the response just below the cutoff
frequency approaches 80 dB/decade. However, the good ampli-
tude response near the —3-dB cutoff frequency is accompanied
by a relatively poor phase response in this region, especially for
high-order filters. Therefore, these filters would not be very useful
unless the signal spectrum was kept at least about half an octave
above the cutoff frequency of the filter. Thus, if the noise and
signal were separated by an octave or more, the Butterworth-
derived filter might yield a better noise rejection than the Bessel-
derived filter. For example, it can be seen from Figs. 2 and 5 that
a third-order Butterworth-derived MDS filter actually has a be-
tter phase response above its —3-dB cutoff frequency than a
third- or fourth-order Bessel-derived filter has above its —3-dB
cutoff frequency.

Other low-pass configurations such as a Chebycheff filter, or a
transitional Bessel-Butterworth response, were not investigated
but may be able to supply a 60-dB/decade low-frequency rejec-
tion with a better phase response just below the cutoff frequency
than does a Butterworth-derived filter.

IV. CONCLUSIONS

In practical applications, the MDS high-pass filter may be a
desirable alternative to a digital FIR linear phase filter if a digital
processor of capability sufficient for the FIR algorithm is not
already part of the system. In most such applications, the delay
element will be the part of the MDS filter that will be the most
expensive and produce the most noise and distortion. However,
there are many frequency ranges for which a relatively inexpen-
sive and high quality delay is available.

Though a Bessel-derived filter can provide a response sufficient
for many purposes, with very little phase error, it can yield an
asymptotic attenuation of only 40 dB/decade. Higher attenua-
tions can be attained by using other types of low-pass filter in the
MDS configuration, but there may be some attendant sacrifice in
phase characteristic. Higher attenuations could also be attained
by cascading sections each having a shorter delay, as two 5-ms
sections each derived from a three-pole Bessel low pass filter
instead of a 10-ms filter derived from a six-pole filter. By a
proper selection of the cascaded sections it may be possible to
partially cancel the phase errors caused by the lower order filters
used, however the design of such multisection MDS filters is not
considered further in this work.
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